В этом году — 45-я годовщина космического путешествия двух аппаратов NASA, «Вояджер-1» и «Вояджер-2», отправленных в 1977-м в долгую миссию, основной целью которой было детальное изучение планет Солнечной системы. С момента начала своей миссии два аппарата-близнеца уже успели покинуть предельную границу гелиосферы Солнца, именуемую гелиопаузой. Это пограничная область нашей Солнечной системы, в которой фронтальный поток солнечного ветра рассеивается в межзвездную среду.

Схема Солнечной системы с обозначением текущего положения Voyager -1
Именно гелиосферой завершается наша Солнечная система, хотя ее физическим концом следует считать Облако Оорта пояс из астероидов, которые попадают под гравитационное воздействие Солнца

Недавно у «Вояджера-1» начались проблемы с его пространственной ориентацией, что может стать первым свидетельством начала конца одной из самых масштабных космических миссий в истории. Мы попытались разобраться, что случилось с навигацией аппарата, а также рассмотрели, как именно работает космическая связь в условиях глубокого космоса.

Как работает связь на «Вояджере-1»

Для того чтобы лучше понимать, как именно работает передача связи за пределы Солнечной системы, следует рассказать о конструктивных особенностях радиоприемного оборудования «Вояджера-1» и компьютерных систем, которые его обслуживают.

Начать стоит с AASC — системы артикуляции и управления ориентацией зонда, предназначенной для отправки на Землю данных о положении «Вояджера» в пространстве и его полетном курсе. Антенна AASC с высоким коэффициентом усиления постоянно направлена на нашу планету, чтобы способствовать большему усилению слабого волнового сигнала, исходящего от зонда в космосе.

По мере постепенного удаления от Земли мощность сигнала «Вояджера» постоянно снижается, вследствие чего уменьшается скорость передачи информации с зонда на нашу планету. Согласно данным на 2017 год, мощность сигнала аппарата составляла около -160.48 дБм, что приблизительно в 1000 раз слабее сигнала обыкновенного FM-приемника. Тем не менее, современные технологии позволили значительно улучшить чувствительность сети приемной антенны. И даже спустя 44 года специалистам NASA удается не только улавливать слабые радиофлуктуации, исходящие от «Вояджера-1», но и посылать ему ответ при помощи сигнала гораздо более высокой мощности с Земли.

Удивительно, но для приема сигнала на такой дальней дистанции «Вояджер» использует маломощные радиоприемники емкостью 23 Вт. Приемная антенна, установленная на космическом аппарате, имеет диаметр 3,7 м, а диаметр приемных антенн на Земле, совокупно формирующих комплекс Deep Space Network, составляет 34 и 70 м.

Антенна для приема сигнала Deep Space Network
Прием сигнала антенной DSN (Deep Space Network)
Когда сигнал достигает Земли (1), большие параболические отражатели (2) и гиперболические вспомогательные отражатели (3) улавливают микроволновое излучение и фокусируют его на приемнике с криогенным охлаждением в основании антенны (4)

Центры по приему сигнала с «Вояджеров», находящиеся на Земле, расположены под углом в 120° друг к другу. Это сделано для того, чтобы обеспечивать зону покрытия «Вояджера-1» вне зависимости от положения Земли по отношению к нему, а проще говоря — в любое время суток. Приемные станции для общения с аппаратом расположены в Австралии (станция Deep Space Network в Канберре), США (станция в Голдстоуне, Калифорния) и Испании (станция слежения в Мадриде).

Повышенный коэффициент усиления сигнала достигается при помощи улавливания сигнала от «Вояджера» сразу несколькими приемными станциями на Земле. При этом используют принцип действия радиоинтерферометрии со сверхдлинной базой (VLBI), которая позволяет получить более точные данные о месторасположении зондов посредством создания осей (или линий) интерферометрии между двумя приемными станциями. Помимо этого, в определении точного местоположения «Вояджера» специалистам NASA помогает доплеровский дальномер.

Базовые оси интерферометрии для сообщения с "Вояджером"
Базовые оси интерферометрии для сообщения с «Вояджером«

Для того чтобы обеспечить стабильный уровень связи на такой дистанции, несущая волновая частота восходящей линии связи должна быть равна 2114 МГц. Обратная же связь — от Земли к «Вояджеру» — происходит, когда его приемники синхронизируются по фазе с частотой несущей восходящей линии связи. Затем зонд преобразует ее в двусторонний когерентный несущий сигнал нисходящей линии связи, и передает его обратно на Землю с помощью передатчиков, функционирующих в X и S частотных диапазонах.

схема ширины исходящего луча космического зонда Во́яджер
Направленность исходящего от «Вояджера« сигнала в X и S частотном диапазоне

Для питания источника переменного тока, который подается на каждую из подсистем, используются радиоизотопные термоэлектрические генераторы. Крайне важным для корректного сообщения космического аппарата с Землей является использование радиочастот с минимальным количеством техногенных помех.

Что пошло не так

18 мая NASA заявило, что космический аппарат «Вояджер-1» начал испытывать проблемы с определением своего положения в пространстве. Данные телеметрии, которые аппарат передавал на Землю через свою систему артикуляции и управления ориентацией зонда, не имели ничего общего с расчетной траекторией и скоростью его полета. Модуль начал отправлять на Землю случайно сгенерированные пространственные координаты, и в NASA всерьез озадачились этим вопросом.

На сегодня известно, что сбой, который произошел в системе AASC, не спровоцировал перевод аппарата в «безопасный режим». Перейдя в него, «Вояджер» выполнял бы только основные функции, в то время как у инженеров NASA появилось бы время, чтобы разобраться, что конкретно с ним случилось.

На то, что «Вояджер-1» все еще путешествует по заданному маршруту, косвенно указывает и стабильность радиосигнала, который излучает зонд — он не стал затухать и все так же работает на заданных рабочих частотах. Все это может свидетельствовать только об одном — антенны «Вояджера-1» по-прежнему направлены строго на Землю, а значит, его фактический курс не изменился.

Стоит отметить, что сейчас аппарат находится приблизительно в 23,3 млрд км (14,5 млрд миль) от Земли. Учитывая колоссальность дистанции, свету необходимо свыше 20 часов и 33 минут на то, чтобы добраться с Земли до «Вояджера-1», поэтому полный цикл приема-передачи сигнала занимает почти двое суток. Зонд продолжает удаляться от Солнечной системы со скоростью 48 280 км/час, постоянно увеличивая количество времени, нужного для общения с ним. 

графический формат траектории движения "Вояджера-1
Траектория движения «Вояджера-1« за границы Солнечной системы
Короткая гифка, демонстрирующая 45-летнее странствие космического аппарата

Сьюзен Додд, главный руководитель проектов обоих «Вояджеров», сдержанно оценила возникшую ситуацию, отметив, что на данном этапе миссии аппарата такие проблемы никого не удивляют, так как оба «Вояджера» уже давно превысили свой эксплуатационный срок службы. Додд также допустила, что аномалию в системах телеметрии «Вояджера-1» могло вызвать постоянное влияние на зонд космической радиации.

Тем не менее, команда специалистов NASA, отвечающая за связь с «Вояджером-1», не отчаивается. «Я думаю, что, если есть способ решить эту проблему с помощью AACS, наша команда его найдет», — уверена Додд. Возможным решением может стать как изменение программного обеспечения AASC, так и перезапуск всей системы положения в пространстве при помощи одной из резервных аппаратных систем «Вояджера».

Несмотря на загадку систем телеметрии «Вояджера-1», специалисты NASA остаются оптимистичными. Они напоминают, что даже если система AASC на «Вояджере-1» и не придет в норму, аппарат все равно продолжит свою деятельность только до 2025 года, когда радиоизотопные термоэлектрические генераторы превысят собственный срок эксплуатации и больше не смогут вырабатывать достаточного количества электроэнергии для функционирования научного оборудования зонда.

Впрочем, оба «Вояджера» и обслуживающая их команда уже и так сделали слишком много для того, чтобы навсегда войти в космическую историю человечества. О результатах космических миссий каждого из зондов мы расскажем подробнее в двух других статьях нашего триптиха, посвященного 45-летию космической программы «Вояджер».